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conversion can be visually monitored as the orange dansyl 
chloride converts to the yellow dansyl fluoride. 

The mild reaction conditions, excellent yields, simple iso- 
lation and purification of products, and scalability'8 are ad- 
vantages of this procedure over prior arts that require energy 
input, sophisticated equipment, and expensive, noncom- 
mercially available reagents. 

Experimental Section 
Reactions were carried out in Pyrex equipment. Sulfonyl chlorides 

were commercially available (Eastman Kodak Co.). Potassium fluo- 
ride was commercially available (MCB) in anhydrous form and was 
not dried prior to use. 18-Crown-6 ether was prepared according to 
a known literature procedure.'S 

Preparation of p-Acetamidobenzenesulfonyl Fluoride (6). 
Acetonitrile Method. To a mixture of p-acetamidobenzenesulfonyl 
chloride (117.0 g, 0.5 mol) and potassium fluoride (58.0 g, 1.0 mol) in 
200 mL of acetonitrile was added a solution of 18-crown-6 ether/ 
acetonitrile complex (5 g) in 100 mL of acetonitrile a t  room temper- 
ature (20 "C). The reaction mixture was allowed to stir overnight. I t  
was then drowned out in 5 volumes of water. The off-white solid was 
collected, washed with water, and dried to provide 105.0 g of p-ace- 
tamidobenzenesulfonyl fluoride, mp 175-177 O C ,  96% yield. 

Preparation of Benzenesulfonyl Fluoride (3). Neat Method. 
To a solution of 18-crown-6 ethedacetonitrile complex (5 g) and 
benzenesulfonyl chloride (340 g, 1.93 mol) was added portionwise 
potassium fluoride (130 g, 2.24 mol). The reaction mixture was allowed 
to stir overnight after completion of the exothermic addition. One liter 
of water was then added, and the organic layer was separated, dried 

over anhydrous magnesium sulfate, and vacuum distilled to give 285.0 
g of benzenesulfonyl fluoride, bp 84-85 "C (8 mmHg), 92.5% yield. 

Registry No..-1 chloride derivative, 124-63-0; 2 chloride de- 
rivative, 1939-99-7; 3 chloride derivative, 98-09-9; 4 chloride deriva- 
tive, 98-59-9; 5 chloride derivative, 98-58-8; 6 chloride derivative, 
121-60-8; 7 chloride derivative, 605-65-2. 
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Commzmz'catz'ons 
a'-Functionalization of B,y-Unsaturated 
Cyclohexenones. Utilization of Silyl Enol Ethers 
Produced from the Lithium/Ammonia 
Reduction of Silyl Aryl Ethers 

Summary: Lithium/ammonia reduction of isopropyldimethyl- 
and tert- butyldimethylsilyl aryl ethers provides a high-yield 
synthesis of lP-dihydroaryl silyl ethers which may be re- 
giospecifically elaborated to nonconjugated ketones. 

Sir: We have been faced with the need for a general method 
for synthesis of nonconjugated enones of the type la,b. 
Analysis of this problem suggested that one conceptually 
simple solution might be via the reaction of enolate 2a,b with 
an electrophilic species, E+. 

X a(: + xLkoLi + E+ 
l a ,  X = CH, 2a, X = CH, 
b, X = OCH, b, X = OCH, 

Attempts to generate enolate 2a by addition of ketone 3 to 
a solution of lithium diisopropyl amide (LDA) were precluded 
by preferential formation of conjugated enolate 4.l 

Since it has been established that silyl enol ethers can be 
regiospecifically functionalized under kinetic conditions either 
directly, by electrophilic substitution reactions,2 or via prior 
conversion to an enolaB,3p4 it was felt that a similar expedient 
with dihydroaryl silyl ethers such as 6a-c might provide an 
efficient synthesis for the desired class of nonconjugated en- 
ones. 

3 

O O f i  + H3cn,Li H 6  
2a (-2%) 4 (-80%) 

LD A/TH F 

-78 OC 

Preparation of the requisite dihydroaryl silyl ethers can be 
conveniently achieved by lithium/ammonia reduction of the 
corresponding tert- butyldimethylsilyl or isopropyldimeth- 
ylsilyl phenyl ethers 5a-b5 under carefully controlled condi- 
tion@ (see Chart I). The corresponding trimethylsilyl aryl 
ether 5c is hydrolytically unstable to the reaction conditions 
and provides only a very poor yield of dihydroaryl isomer 
6c. 

t-BuOH. -33 'C 

5a,  R = C(CH,), 6a-c 
b, R = CH(CH,), 
c ,  R = CH, 

The dihydroaryl silyl ethers 6-15 serve as excellent sub- 
strates for further functionalization; for example, reaction of 
isopropyldimethylsilyl enol ether of 7b with methyllithium3J3 
cleanly generates enolate 2a as demonstrated by reaction with 
acetic anhydride (inverse addition) to produce oxygen and 
carbon acylated products 16s.9 and 17899J4 which are uncon- 
taminated by products which would have resulted from eno- 
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Chart I. Dihydroaryl Silyl Ethers Produced from 
Aryl Silyl 

X OSi (CH3),R 

6a, X = H; R = t-Bu (95%) 
b, X = H;  R = i-Pr (90%) 

7a, X = CH,; R = t-Bu (92%) 
b, X = CH,; R = i-Pr (90%) 

8a, X = OCH,; R = t-Bu (95%) 
b, X = OCH,; R = i-Pr (90%) 

OSi(CH J2R 

9a, R' = CH,; R2  = R 3  = H;  R = t-Bu (96%) 
b, R1 = CH,; R2  = R3 = H; R = i-Pr (89%) 

l o a ,  Rl = R2 = CH,; R 3  = H; R = t-BU (97%) 
b, R' = Ra = CH,; R 3  = H; R = i-Pr (90%) 

l l a ,  R1 = R3 = CH,; R' = H; R = t-Bu (95%) 
b, R1 = R 3  = CH,; R2  = H; R = i-Pr (93%) 

qCH3 
OSi (CHJ2R OSi (CH,),R 

12a, X = CH,, R = t-Bu (95%) 
b, X = CH,, R = i-Pr (89%) 

b, X = OCH,; R = i-Pr (80%") 

h 3  

14a, R = t-Bu (60%") 
1 3 a , x = O C H , ; R = t - B ~ ( 8 5 % ' ~ )  b , R =  j.Pr(54%") 

OSi(CH,),R 
(JJ 
15a, R = t-Bu (95%") 

b, R = i-Pr (91%") 

late equilibration. l516 The further versatility of dihydroaryl 
silyl ethers is shown by the direct production of 17 via the 
Tic14 catalyzed2 reaction of 7b with acetyl chloride. 

7b 
J 

2a 
CH, 
I 

CH3COCl 
17 (78%) 

TiClr-Ti( O-i-Pr)r9 
7b 

CHzC12, -70 "C 

Initial attempts a t  alkylation of enolate 2a were disap- 
pointing. Addition of 2a to excess methyl iodide (with or 
without HMPA) does not smoothly produce the desired ke- 
tone 18. In addition to a poor yield of 18 (25%), the mixture 
contains nonconjugated ketone 19 (20%), conjugated isomers 
20 (5%) and 21 (5%), nonmethylated ketones 3 (10%) and 22 
(5%), as well as several polyalkylated products (30%). During 
the course of the alkylation reaction, the initially produced 
alkylated ketone 18 is apparently serving as an acid to allow 
enolate equilibration which fosters the observed plethora of 
p r 0 d ~ c t s . l ~  

Dihydroaryl isopropyldimethylsilyl ethers also provide 

2a 18 

CH, 20 

19 21 

3 22 

convenient substrates for the synthesis of nonconjugated 
ketones via tetraalkylammonium fluoride mediated hydrol- 
ysis.lS-2O Reaction of 7b with a homogeneous solution of tet- 
rabutylammonium fluoride5 in aqueous tetrahydrofuran 
buffered with boric acid smoothly produces enone 3. Hy- 

+ H3CQ0 

H20,  THF,  HpBO, 

7b ( n - C 4 H 9 ) . N + r , +  
10 OC, 20 m i n  HJC 

3 (96%) 22 (<l%) 

drolysis of mixed siloxyalkoxy ethers 8b and 13b similarly 
yields the regiospecifically monoprotected diones 23 and 25, 
respectively.7-9 

8b 

l3b 

+ 
H3C0 

24 (1%) 

HzO, T H F ,  H,BO, 

( ~ - c ~ H ~ ) , N + F - ,  
10 O c ,  10 m i n  

25 (96%) 

The complimentary hydrolysis of the alkyl enol ether 
moiety of tert- butyldimethyl silyl ethers Sa and 13a may be 
satisfactorily achieved under acidic c ~ n d i t i o n s . ~ - ~ ~ ~ ~ ~ * ~  

H,CO OSi(CHJ),C(CHJ), 
8a 

26 (55%) 
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13a 

I-L20, THF 

OSi (CHJ2C(C1U 

27 (54%) 
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Organoselenium Chemistry. Epoxidation of 
Olefins with Benzeneseleninic Acid and Hydrogen 
Peroxide (“Benzeneperoxyseleninic Acid”) 

Summary:  Benzeneseleninic acid and hydrogen peroxide 
generate in situ “benzeneperoxyseleninic acid” which func- 
tions as an epoxidizing agent. 

Sir: We have observed the formation of epoxides during the 
oxidation (50% aqueous hydrogen peroxide) and subsequent 
elimination of phenylseleno groups adjacent to carbonyls.’ 


